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1 Introduction

Little string theories (LSTs) are non-local theories without gravity that describe the dy-

namics of NS5 branes in the limit where the string coupling vanishes [1–3]. Although the

excitations on the brane decouple from the bulk, the theory on the NS5 branes remains

strongly coupled. LST admits a holographic description in terms of a near-horizon lin-

ear dilaton geometry [4]. At finite temperature, the only geometries known analytically

correspond to a Hagedorn phase, so the temperature is fixed at the scale of the LST.

There are several features that make these theories interesting. The low energy de-

scription of LST in type IIA is given by the (2,0) superconformal theory, whereas for LST

in type IIB the low energy description is in terms of Super Yang Mills theory with (1,1)

supersymmetry. The holographic description of LST generalizes the more usual AdS/CFT

correspondence [5]. However, the theory has typical properties of a string theory like T-

duality, and the holographic dual allows to compute off-shell quantities. This is in contrast

with critical string theories, where so far it is possible only to calculate the S-matrix. An-

other interesting point is that the linear dilaton black holes are closer relatives to black
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holes in asymptotically flat space [6–8]. Then, understanding Hagedorn LSTs may be a

step towards the implementation of holographic ideas to less exotic black holes.

A key issue is the thermodynamical stability of the system. In a holographic construc-

tion there is an identification of degrees of freedom on both sides of the duality, so the

existence of thermodynamical instabilities should be reflected in the dual geometry along

the lines of the Gubser-Mitra conjecture [9]. Indeed, the conjecture has been confirmed to

hold for backgrounds with finite negative specific heat, cV < 0, where there is a dynamically

unstable mode that is associated to an imaginary speed of sound in the dual theory [10]

v2
s =

∂P

∂E =
S

cV
.

The Hagedorn phase of LSTs is marginally stable, but at weak coupling it can be shown

that quantum corrections render it unstable [11–14]. At strong coupling, black hole solu-

tions that would correspond to LST on compact spaces have been shown to be thermo-

dynamically unstable with negative specific heat [10, 15, 16]. In the flat space limit, the

specific heat diverges, cV → −∞, so that the speed of sound vanishes and the background

is marginally stable [10]. Then, according to the Gubser-Mitra conjecture, the geometry

should not show any instability at the classical level, although it could be unstable if the

effect of quantum corrections were taken into account.

The absence of the tachyon associated to the sound mode was confirmed in [17]. How-

ever, the computation of the holographic Green’s function [17–19] reveals an analytic struc-

ture that seems incompatible with a retarded correlator and maybe introduces other in-

stabilities. If this were the case, the conjecture would fail. Our purpose in this paper is

to clarify this issue using a particular setup. We analyze the retarded Green’s function

in the linear dilaton black hole and compute the spectral function above the mass gap for

the operators dual to the dilaton and the metric. We will show that there are no evident

instabilities, and explain the origin of the analytic structure found previously. We also find

a new set of modes describing energy loss that was not discussed previously.

The outline of the paper is as follows. In section 2 we will introduce a family of black

holes that are the holographic duals to a LST at different volumes and study their ther-

modynamics. We will concentrate on the infinite volume case and, in section 3, we will

give the equations of motion for small metric and dilaton fluctuations and describe some

common qualitative features of their effective potentials. In sections 4 and 5, we will dis-

cuss the decay of fluctuations in the black hole geometry through quasinormal modes and

argue that there are no dynamical instabilities. Then, we will relate the previous results to

the scattering matrix and the holographic computation of two-point functions in section 6.

We will present our conclusions in section 7. Technical details of the calculations can be

found in the appendix.

2 Thermodynamics of the Hagedorn phase

LSTs are non-gravitational string theories that describe the dynamics of NS5 branes. They

have a density of states that grows exponentially with the energy

Ω(E) = EαeβHE .
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The Hagedorn temperature TH = 1/βH is a limiting temperature of the system. The

partition function

Z =

∫

dE Ω(E) e−βE

becomes formally divergent beyond this point and a first order phase transition will take

place, although the final state is not known for LSTs. The first order phase transition

is a characteristic of the canonical ensemble. In the microcanonical ensemble the energy

of the system can be increased until the Hagedorn temperature is reached. Then, adding

further energy does not increase the temperature and it is invested in exciting internal

degrees of freedom instead. To a first approximation, the temperature does not change

at all, but, depending on the sign of α, there can be a slight slope that gives positive

specific heat if α > 0 or negative specific heat if α < 0. Thus, the Hagedorn phase could

be thermodynamically stable or unstable. It is a highly non-trivial question whether the

Hagedorn phase of a given theory would be stable or not.

In order to study the LST at strong coupling we will use a holographic description in

terms of an S-dual geometry sourced by a configuration of D5 branes. The solution [20, 21]

has been used as the gravitational dual of the theory living on Nc five-branes wrapping an

S2. At low energies the theory flows to SU(Nc) N = 1 SYM in flat space [21]. We

will consider a deformation of this theory, with Nf = 2Nc five-branes that introduce

fundamental degrees of freedom in the dual theory [22]. These geometries were constructed

in [22] and a linear dilaton black hole solution at the Hagedorn temperature of the dual

LST was found there as well. As we will discuss later, the presence of the linear dilaton

implies that the low energy degrees of freedom of the field theory do not really decouple

from the higher LST modes.1 Nevertheless, the geometry close to the horizon should still

be associated to their holographic description.

In [25], a new class of linear dilaton black holes with compact horizon was found with

temperature T higher than the Hagedorn temperature in flat space TH = 1
2π

√
Ncα′

. The

metric in the Einstein frame is

ds2 = e
φ

2

[

−f(r)dt2 +R2dΩ2
3 +

Ncα
′R2

R2 +Nc

dr2

f(r)
+Ncα

′dY 2
5

]

.

f(r) = 1 − e2(r0−r), φ = φ0 + r . (2.1)

where r is the holographic radial coordinate, φ is the dilaton and Y5 is the internal space,

whose explicit form is unimportant for our analysis. Although quantum corrections will

start to be important as r is increased, we are interested in the classical behavior and we

will ignore this. In order to remain in a weakly coupled regime, one should perform an

S-duality for some value of r and continue along a geometry with decreasing dilaton. This

is not very important for our analysis, as will become clearer in section 3.1.

The horizon is at r = r0 and has a three-sphere S3 component of radius R = Nh/2

proportional to the flux of Ramond-Ramond 3-form on the sphere
∫

S3

F(3) = Nh . (2.2)

1At zero temperature there are special cases where there is total decoupling, as was studied in [23, 24].
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The temperature of these black holes is independent of the radial position of the horizon

T (R) =
1

2π
√
Ncα′

√

1 +
Nc

R2
= TH

√

1 +
Nc

R2
> TH , (2.3)

We can think of the T = TH black hole solution with flat R3 horizon as the formal limit

R→ ∞ of the solution (2.1)

lim
R→∞

T (R) = T+
H (2.4)

This limit is consistent with the vanishing of the Ramond-Ramond 3-form flux density on

the three-sphere,

lim
R→∞

Nh

R3
=

2

R
→ 0 . (2.5)

The entropy of these solutions was computed in [25]. We compute the energy (A.6)

and find that

E = TS = Ce2r0V (S3)
T

TH
, C = N2

c

e2φ0(α′)2V (Y5)

8πG10
. (2.6)

Here V (S3) is the volume of the S3 and V (Y5) the volume of the internal five-dimensional

space. Our results agree with the computation at infinite volume [26] when the R → ∞
limit is taken.

We can interpret each black hole solution as a state of fixed entropy and volume in the

microcanonical ensemble. The temperature is clearly

(

∂E

∂S

)

V

= T . (2.7)

If we fix the volume, we can change the energy without changing the temperature by tuning

the position of the horizon, so
(

∂T

∂E

)

V

= 0 . (2.8)

We can use the last result to find the density of states,

1

T
=
∂ log Ω(E)

∂E
⇒ Ω(E) = Ω0e

E/T . (2.9)

Then, all these backgrounds are marginally stable, α = 0.

3 Fluctuations in the black hole

Small perturbations around the black hole can be studied using the linearized equations

of motion in the background. This allows to study the hydrodynamics of the dual field

theory using the methods pioneered in [27] and, more generally, to evaluate the spectrum

of quasinormal modes in the black hole background, which describe dissipation in the dual

theory [28, 29]. Hydrodynamic modes in dual LST backgrounds were studied in [17].
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The metric of the flavored Nf = 2Nc planar black hole is the R→ ∞ limit of (2.1)

ds2 = e
φ

2

[

−f(r)dt2 + d~x2 +Ncα
′ dr

2

f(r)
+Ncα

′dY 2
5

]

. (3.1)

where t, ~x are the coordinates of Minkowsky space.

For simplicity, we will work in units where α′ = 1. We also make the change of variables

r = −(log u)/2, so the black hole factor simplifies to f(u) = 1 − u. Notice that r → ∞
corresponds to u→ 0.

The metric fluctuations split into three independent channels classified by the SO(2)2

unbroken group of rotations in space: scalar, vector and tensor. Scalar perturbations mix

with the dilaton.

The equations of motion for plane-waves in four-dimensional space are derived in ap-

pendix B. Let us use dimensionless frequency and momentum in units of the temperature

w = ω/(2πTH ), q = q/(2πTH ). From the metric and the dilaton equations, we can build

two diffeomorphism-invariant quantities Zsound and Zφ, obeying

Z ′′
sound +

q2u− 2w2

(1 − u)(q2(u− 2) + 2w2)
Z ′

sound

+

(−4u2(1 − u)q2 + (u2 − 3u+ 2)q4 + (3u − 4)q2w2 + 2w4

4u2(1 − u)2(q2(u− 2) + 2w2)

)

Zsound

− 4(q4 − 2q2w2)

3(1 − u)(q2(u− 2) + 2w2)
Z ′

φ = 0 , (3.2)

and

Z ′′
φ − 1

1 − u
Z ′

φ +
w2 − (1 − u)q2

4u2(1 − u)2
Zφ = 0 (3.3)

If one sets Zφ to zero, equation (3.2) becomes the same as the sound mode equation found

in [17] for six-dimensional LST. When the spatial momentum is zero, q = 0, the two

equations decouple and the sound equation reduces to the scalar equation

Z ′′
φ − 1

1 − u
Z ′

φ +
w2

4u2(1 − u)2
Zφ = 0 . (3.4)

The same equation is also obtained for the tensor component of the metric.

For the shear mode, we find the equation

Z ′′
shear(u) +

w2

(1 − u)(q2(1 − u) − w2)
Z ′

shear(u) −
q2(1 − u) − w2

4(1 − u)2u2
Zshear(u) = 0 . (3.5)

All these equations coincide with the equations found in [17] for six-dimensional LST.

3.1 Schrödinger potentials for classical modes

In order to understand better the asymptotic conditions on the solutions to the equations

of motion, it is convenient to write them in a Schrödinger form using a Regge-Wheeler

2For non-zero momentum.
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tortoise coordinate. The resulting “effective potentials” can also be used to study the 1-

loop corrections to the black hole free energy due to supergravity modes. This was done

in [13] for the system of flat D5-branes at weak coupling. In that case, 1-loop corrections

lift the Hagedorn degeneracy of the black hole.

Let us take Zφ(u) =
√
uψ(u) and change variables to the Regge-Wheeler tortoise

coordinate v = log(u) − log(1 − u). In this new coordinate, spatial infinity corresponds to

v → −∞, while the black hole horizon is at v → ∞. Equation (3.2) has now the form of a

Schrödinger equation
(

−∂2
v + V (v)

)

ψ = Eψ, where the energy is

E =
w2

4
(3.6)

and the potential is

V (v) =
1 − u2(v) + q2( 1 − u(v) )

4
(3.7)

The potential is positive and monotonic, and it is equal to (1 + q2)/4 at infinity and

vanishes at the horizon. Solutions can be expanded in ingoing and outgoing plane waves at

the horizon. At infinity there are two possible situations. For E < (1+q2)/4 or w2−q2 < 1,

one solution blows up and the other is exponentially decreasing. On the other hand, for E >

(1+q2)/4 or w2−q2 > 1, the two solutions correspond to outgoing or ingoing plane waves.

We can repeat the same analysis for the sound and the shear mode, obtaining simi-

lar results

Zsound =
√
u(q2(u− 2) + 2w2)ψ , Zshear =

√

u(w2 − q2(1 − u)) ψ

Vsound(v) =
1 − u2(v) + q2( 1 − u(v) )

4
+

2q2(2w2 − q2)(1 − u(v))u2(v)

(q2(u(v) − 2) + 2w2)2

Vshear(v) =
1 − u2(v) + q2( 1 − u(v) )

4
+

q2(1 − u(v))u2(v)(q2(1 − u(v)) + 2w2)

4 (q2(1 − u(v)) − w2)2

The potentials have similar asymptotics. The behavior close to the horizon is typical

of black holes, while the asymptotics at infinity are due to the non-trivial dilaton profile.

The height of the potential is given by the slope of the linear dilaton background and it is

independent of the sign, so that the same potential will be found for the S-dual geometry

as we had anticipated.

We have computed the equations and the potentials explicitly for the Nf = 2Nc

background, but other black hole backgrounds asymptotically conformally equivalent to

flat space and with a linear dilaton will have the same asymptotic behavior of the effective

potential, flat and vanishing at the horizon and constant at large values of the radial

coordinate, e.g. [17–19].

Therefore, we expect that the following analysis will produce qualitatively similar

results in more general cases.

4 Quasinormal modes and speed of sound

Localized fluctuations in a black hole background tend to spread and disappear as time

passes. The energy that initially is concentrated in some finite region falls into the black

– 6 –
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hole or escapes to infinity, so that the local energy density vanishes. This process is

described by the quasinormal modes (QNMs). In order to define QNMs, suitable boundary

conditions have to be imposed at the horizon and at spatial infinity. The condition at the

horizon is that the mode should be infalling. In terms of the effective potentials computed

in section 3.1, this means that we pick the plane wave moving towards the horizon v → ∞

∼ e−iwt+iwv/2.

At spatial infinity v → −∞, we have two possible situations, depending on the four-

dimensional mass shell w2 − q2. If w2 − q2 < 1, then the modes are below the potential

barrier, so we must pick the vanishing solution at infinity (Dirichlet boundary condition).

However, if w2 − q2 > 1, then the modes are above the barrier and the right boundary

condition is to pick the outgoing plane wave. The asymptotic form of the mode is then

w2 − q2 < 1 ∼ e−iwt+
√

1+q2−w2v/2

w2 − q2 > 1 ∼ e−iwt−i
√

w2−q2−1v/2

For Im w < 0, the QNMs describe fluctuations that decrease exponentially in time, hence

their association with dissipation. On the other hand, modes with Im w > 0 would be in

principle interpreted as instabilities of the background. The quasinormal spectrum of the

dilaton and shear modes can be obtained analytically, because their equation of motion

can be reduced to a hypergeometric equation. Although this is not the case for the sound

mode, we are able to show that the speed of sound vanishes, vs = 0 (4.20). This is in

agreement with our expectations from the thermodynamical analysis: a vanishing speed of

sound signals a marginal (in)stability.

4.1 Solutions of the hypergeometric equation

In this section we will establish the notation that will be used in the rest of the paper.

Consider the hypergeometric equation

u(1 − u)y′′ + (c− (a+ b+ 1)u)y′ − aby = 0 , (4.1)

The local solutions close to the singular points are given in terms of hypergeometric func-

tions 2F1(a, b, c;x) = 1 + ab
c x+O(x2), x→ 0. At spatial infinity (u→ 0+),

y(u) = a0y
(0)
0 (u) + b0y

(1)
0 (u) ,

y
(0)
0 (u) = 2F1(a, b, c;u) ,

y
(1)
0 (u) = u1−c

2F1(a+ 1 − c, b+ 1 − c, 2 − c;u) . (4.2)

At the horizon (u→ 1−), the local solutions are

y(u) = a1y
(0)
1 (u) + b1y

(1)
1 (u) .

y
(0)
1 (u) = 2F1(a, b, 1 − c+ a+ b; 1 − u) ,

y
(1)
1 (u) = (1 − u)c−a−b

2F1(c− a, c− b, 1 + c− a− b; 1 − u) . (4.3)

– 7 –
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Both sets of solutions are related by the connection coefficients

(

y
(0)
1

y
(1)
1

)

=

(

C00 C01

C10 C11

)(

y
(0)
0

y
(1)
0

)

, (4.4)

whose explicit analytic form is

C00 =
Γ(1 − c+ a+ b)Γ(1 − c)

Γ(1 − c+ b)Γ(1 − c+ a)

C01 =
Γ(1 − c+ a+ b)Γ(c− 1)

Γ(a)Γ(b)

C10 =
Γ(1 + c− a− b)Γ(1 − c)

Γ(1 − a)Γ(1 − b)

C11 =
Γ(1 + c− a− b)Γ(c− 1)

Γ(c− b)Γ(c− a)
. (4.5)

When the values of a, b and c are such that a connection coefficient vanishes, then one

of the hypergeometric solutions becomes a polynomial. On the other hand, for the values

where the connection coefficient has a pole, the hypergeometric series diverges.

4.2 Dilaton and tensor mode

The equation of the dilaton with nonzero momentum, (3.3), reduces to a hypergeometric

equation via

Zφ[u] = uc/2(1 − u)−iw/2y(u) (4.6)

where the parameters of the hypergeometric equation are

c = 1 +
√

1 + q2 − w2 (4.7)

and

a = b =
c

2
− i

w

2
=

1 +
√

1 + q2 − w2 − iw

2
(4.8)

With this choice for the dilaton perturbation (4.6), the infalling boundary condition cor-

responds to y(u) ∼ 1 close to the horizon, u→ 1−, v → +∞, that is the y
(0)
1 solution

Zφ ∼ (1 − u)−iw/2y
(0)
1 (u) ∼ eiwv/2

The Dirichlet condition at spatial infinity, u→ 0+, v → −∞ corresponds to y(u) ∼ 1, (y
(0)
0 )

Zφ ∼ uc/2y
(0)
0 ∼ √

u ψ+
<(w, q, v)

where

ψ+
<(w, q, v) → e

√
1+q2−w2 v/2

is the normalizable solution, for values Imw = 0, w2 − q2 < 1, corresponding to the prin-

cipal branch of the square root Re
√

1 + q2 − w2 > 0. One can choose to set the branch

cut for
√

1 + q2 − w2 at Imw = 0, w2 > q2 + 1, with Re
√

1 + q2 − w2 > 0 on the sheet

– 8 –
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+
+ _
_

first sheet second sheet

+

_
_
+

Figure 1. Branch cuts of
√

1 + q2 − w2 on the complex w plane. Branch points are at

w = ±
√

1 + q2, the first sheet corresponds to Re
√

1 + q2 − w2 > 0 and the second sheet to

Re
√

1 + q2 − w2 < 0. The signs above and below the branch cuts correspond to the sign of

Im
√

1 + q2 − w2.

that includes the physical frequency domain and Re
√

1 + q2 − w2 < 0 on the second sheet.

This choice implies that next to the branch cuts,

sign
(

Im
√

1 + q2 − w2
)

= ∓ sign(Re w), Im w → 0± . (4.9)

on the first sheet and the opposite signs on the second sheet. The sign of the imaginary

part of the square root for each sheet is represented in figure 1.

The solution is initially defined on a real line above the branch cuts Imw → 0+.

From (4.9) this implies that ψ+
< also corresponds to the outgoing solution, for w2 > q2 + 1.

Indeed, when Rew >
√

1 + q2,

e−iwtψ+
< ∼ e−i Re wt+i Im

√
1+q2−w2 v/2 (4.10)

so the solution corresponds to a plane wave moving towards infinity v → −∞ and it is

straightforward to see that the same holds for Re w < 0.

Therefore, we find that quasinormal modes correspond to solutions where y
(0)
1 is pro-

portional to y
(0)
0 . The condition is that the connection coefficient C01 = 0. Using (4.5)

and (4.8).

a =
1 +

√

1 + q2 − w2 − iw

2
= −n, n = 0, 1, 2, . . . (4.11)

There are no solutions to this equation on the physical sheet. This agrees with previous

results found in related Little String backgrounds [17].

It is possible to do an analytic extension of the solution to the second sheet. This is

equivalent to a different choice of solution at spatial infinity

Zφ ∼ uc/2y
(1)
0 ∼ √

u ψ−
<(w, q, v)

In this case quasinormal modes correspond to solutions where y
(0)
1 is proportional to y

(1)
0 .

The condition is that the connection coefficient C00 vanishes

1 − c+ a =
1 −

√

1 + q2 − w2 − iw

2
= −n, n = 0, 1, 2, . . . (4.12)

– 9 –
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This condition is defined now on the first sheet of the square root, notice that it can be

obtained from (4.11) by flipping the sign of the square root. In this case there is an infinite

discrete set of solutions

w = −2i
n(n+ 1)

(2n+ 1)
+ i

q2

(2(2n + 1))
, n = 0, 1, 2, . . . . (4.13)

For q = 0 the n = 0 mode is actually not in the spectrum (C00 6= 0) and the full set of quasi-

normal modes have Imw < 0. When q 6= 0, the n = 0 mode appears above the real axis

w ∼ +iq2/2 and as we increase the momentum, more modes move to the upper half plane.

4.3 Shear mode

We have given an equation for the shear mode (3.5) in terms of the gauge-invariant quantity

Zshear. For the analysis of the quasinormal modes we will work instead with non-invariant

quantities H ′
tx and H ′

zx. The location of the quasinormal modes is itself gauge-invariant,

so it is irrelevant which variable we are using. As a consistency check, we will see that H ′
tx

and H ′
zx have the same quasinormal spectrum. The equations for the shear variables are

wH ′
tx(u) + q(1 − u)H ′

zx(u) = 0 ,

H ′′
zx(u) − H ′

zx(u)

(1 − u)
+

qwHtx(u) + w2Hzx(u)

4(1 − u)2u2
= 0 ,

H ′′
tx(u) − q2Htx(u) + qwHzx(u)

4(1 − u)u2
= 0 , (4.14)

We can solve for H ′
zx from the first equation and for Hzx from the third. Deriving the third

equation with respect to u and plugging back the expressions for Hzx and H ′
zx, we find

a hypergeometric equation for H ′
tx. Similarly, we can solve for H ′

tx in the first equation

and for Htx in the second. Then, deriving the second equation with respect to u and

substituting the expressions of Htx and H ′
tx, we find the same hypergeometric equation for

H ′
zx. This shows that the quasinormal spectrum is the same for both.

The parameters of the hypergeometric equation are

c = 1 +
√

1 + q2 − w2 , (4.15)

and

a =
c

2
− 1 − i

w

2
=

−1 +
√

1 + q2 − w2 − iw

2

b =
c

2
+ 1 − i

w

2
=

3 +
√

1 + q2 − w2 − iw

2
. (4.16)

The analysis follows in the same way as for the dilaton. The quasinormal modes are

determined by the conditions

a = −n, n = 0, 1, 2, . . .

b = −n, n = 0, 1, 2, . . . (4.17)
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The solution of a = 0 is a mode with w = −iq2/2, which is precisely the dispersion relation

of a hydrodynamic mode in the holographic dual. Apart from this mode, the above system

of equations yields the same quasinormal spectrum that we found for the dilaton (4.13).

Therefore, modes in the upper half plane appear for finite values of the momentum, but

these modes with Im w > 0 are all on the second sheet.

4.4 The speed of sound

Let us set the dilaton to zero. The sound equation is a more complicated equation with

four regular singularities at u = 0, 1, 2 − 2w2/q2,∞. The change Z = uρ/2(1 − u)σ/2y(u),

with ρ = 1 +
√

1 + q2 − w2 and σ = −iw gives the Heun equation

y′′ +

(

γ

u
+

δ

u− 1
+

ǫ

u− 2 + 2w2/q2

)

y′ +
αβu−Q

u(u− 1)(u− 2 + 2w2/q2)
y = 0 (4.18)

where

γ = ρ = 1 +
√

1 + q2 − w2

δ = σ + 1 = 1 − iw

ǫ = −2

α = β =
1

2
(γ + δ + ǫ− 1) =

1

2

(

−1 − iw +
√

1 + q2 − w2
)

Q =
q2

2
− w

2

(

3w + 2i
(

1 +
√

1 + q2 − w2
))

+
w2

q2

(

−1 + w
2 −

√

1 + q2 − w2 + iw
(

1 +
√

1 + q2 − w2
))

(4.19)

There is an explicit constant solution y(u) = 1 corresponding to the sound mode. Such so-

lution appears when α = β = Q = 0, that in this case is satisfied for the dispersion relation

w = −iq
2

2
. (4.20)

Therefore, the speed of sound is zero, vs = 0, in the Nf = 2Nc holographic dual theory.

5 Retarded two-point function in the black hole

We have found a set of QNMs with Imw > 0 for q > 0. In order to clarify the issue of the

QNMs with positive imaginary part, we will follow a similar analysis to [30]. We consider

the Fourier transform of solutions of the Schrödinger equations introduced in section 3 for

times t > 0

ψ(w, q, v) =

∫ ∞

0
eiwtψ(t, q, v)dt, Im w > 0 . (5.1)

As in [30] the solution ψ(w, q, v) can be thought of as the evolution by an appropriate

Green’s function of a perturbation that starts at t = 0. The Green’s functionG(w, q; v, v′) is

determined by the choice of two linearly independent solutions of the Schrödinger equation,
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ψ< and ψ>, that satisfy the appropriate boundary conditions at v = −∞ and v = +∞
respectively. The explicit form is

G(w, q; v, v′) =
ψ<(w, q, v<)ψ>(w, q, v>)

W (w, q)
(5.2)

where v< = min(v, v′), v> = max(v, v′) and W (w, q) is the Wronskian of the two solutions,

iW (w, q) = ψ<(w, q, v)
∂

∂v
ψ>(w, q, v) − ∂

∂v
ψ<(w, q, v)ψ>(w, q, v), (5.3)

As we saw in section 3.1, the potential vanishes at v = +∞ and asymptotes to (1+q2)/4

at v = −∞. Physical solutions ψ(w, q) should be at least delta-normalizable in the bulk.

This imposes the following boundary condition as v → +∞:

ψ+
>(w, q, v) ∼ eiwv/2 .

Notice that this is the prescription to compute a retarded correlator, since the black hole

does not radiate classically. Conversely, as v → −∞, we find that solutions can be a linear

combination of

ψ±
<(w, q, v) → e±

√
1+q2−w2 v/2

For values Imw = 0+, w2 < q2 + 1, corresponding to Re
√

1 + q2 − w2 > 0, only ψ+
< is

normalizable. For values of the frequency w2 > q2 +1, ψ+
< also corresponds to an outgoing

plane wave, as was explained in section 4.

The retarded bulk correlator (5.2) for the dilaton and the scalar modes has the follow-

ing form

G(u, u′)= i
(u<u>)(c−1)/2[(1−u<)(1−u>)]−iw/2

(1 − c)C01
2F1(a, b, c;u<)2F1(a, b, 1−c+a+b; 1−u>) ,

(5.4)

where we used the fact that ψ+
< = u(c−1)/2(1−u)−iw/2y

(0)
0 and ψ+

> = u(c−1)/2(1−u)−iw/2y
(0)
1 .

Since ψ+
< and ψ+

> are solution of a Schrödinger equation, their Wronskian (5.3) is

constant. This constant can be evaluated by considering the limit u→ 0. Using

∂

∂v
= (1 − u)u

∂

∂u

and

y
(0)
1 = C00y

(0)
0 + C01y

(1)
0 = C00 2F1(a, b, c;u) + C01 u

1−c
2F1(a+ 1 − c, b+ 1 − c, 2 − c;u)

we find

iW = uc(1 − u)1−iwC01

[

y
(0)
0 ∂uy

(1)
0 − y

(1)
0 ∂uy

(0)
0

]

= (1 − c)C01 = −Γ(1 − c+ a+ b)Γ(c)

Γ(a)Γ(b)
,

(5.5)

which leads to (5.4).
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The Wronskian vanishes when the connection coefficient between the two solutions, ψ+
<

and ψ+
> , has a zero. The inverse of the Wronskian (for the scalar mode) is proportional to

W (w, q)−1 ∼ C−1
01 =

Γ

(

1+
√

1+q2−w2−iw
2

)2

Γ
(

√

1 + q2 − w2
)

Γ(1 − iw)
. (5.6)

An important subtlety in the Green’s function are the singularities of the solutions. The

solutions are proportional to hypergeometric functions whose series coefficients diverge for

some complex values of w, implying that there is no solution. This happens when c < 0 or

1 + a + b − c < 0 in the first sheet or 2 − c < 0 or 1 − a − b + c < 0 in the second sheet.

The bad frequencies are

w = −in, w
2 = 1 − n2 + q

2, n = 1, 2, . . .

This is taken into account by the singularities of the Wronskian, that cancel against any

such spurious singularities. Notice that those solutions correspond to the poles in the

overall factor, as can be seen in (5.5)

W ∼ Γ(1 − c+ a+ b)Γ(c) (5.7)

The singular solutions are for instance at the origin of singularities on the real axis that

were found in the holographic computation of the dual theory Green’s functions [17–19].

Then, the only genuine singularities come from the zeroes of the Wronskian, and

one can show that with the above choice of solutions ψ+
< and ψ+

>, the corresponding

Green’s function has no singularities when it is analytically continued on the Imw > 0 half

plane (4.11). Therefore, this Green’s function can be identified with the retarded correlator.

The full analytic extension of the Green’s function includes the Im w < 0 half plane

and the second Riemann sheet that can be reached through the square root branch cuts

Im w = 0, w2 > q2 + 1. This amounts to flipping the sign of the square root in the

Wronskian (5.6), which is equivalent to changing the ψ+
< solution to ψ−

<.

Singularities on the Imw < 0 half plane on either sheet correspond to solutions of the

Schrödinger equation that diverge as v → ∞ and that can be associated to absorption by

the black hole at late times, as for the usual QNMs studied in AdS spaces. In this case, all

the poles are on the second sheet

wn = −2i
n(n+ 1)

(2n + 1)
+ i

q2

(2(2n + 1))
, n = 1, 2, . . . .

Singularities on the upper half plane of the second sheet Imw > 0, correspond to modes

that diverge as v → −∞, so they also describe the loss of energy in the bulk but as it

escapes towards spatial infinity. This is clearly different from QNMs in AdS spaces, where

the geometry acts effectively as a box and the energy loss is produced only by absorption

by the black hole.

In summary, it is possible to define a retarded Green’s function, analytic in the upper

half frequency plane of the physical sheet. The QNMs with Imw > 0 are all in the second
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sheet, so they are related to processes with no black hole absorption and where all the

energy escapes to infinity.

For the shear mode a similar analysis leads to

W (w, q)−1 ∼
Γ

(

−1+
√

1+q2−w2−iw
2

)

Γ

(

3+
√

1+q2−w2−iw
2

)

Γ
(

√

1 + q2 − w2
)

Γ(1 − iw)
. (5.8)

The spectrum of QNMs is the same on the second sheet. On the first sheet, there is a

single pole associated to the shear diffusion in the dual theory

w = −iq
2

2
.

6 Scattered waves and holographic spectral function

We now understand the physical meaning of the unusual (as compared to AdS) QNMs

from the perspective of the linear dilaton geometry. We now want to interpret them in

terms of the holographic theory. The simplest approach is to use the relation between the

greybody factors for the fields in the black hole geometry and the spectral function of the

dual theory [31, 32].

When the black hole is at equilibrium with a thermal gas, the emitted radiation is the

same as the absorbed radiation, so the greybody factor is simply the transmission coef-

ficient. Then, we have to solve the scattering problem of radiation coming from spatial

infinity. The scattering problem in the context of zero temperature linear dilaton back-

grounds was studied previously in [6], where a relation between the scattering matrix and

holographic Green’s functions was proposed. In this case, there are real pole singularities

that are associated to normalizable states and that should be extracted from the scat-

tering amplitude in order to compute the Green’s function, following a LSZ reduction as

the one proposed in [33]. Normalizable states were localized at the bottom of the linear

dilaton geometry, that in our case has been swallowed by the black hole. These states have

disappeared from the spectrum and the reduction is not necessary in our case.

For w >
√

q2 + 1, radiation enters the black hole from spatial infinity and is partially

reflected and partially transmitted

v → ∞ , eiwv/2

v → −∞ , A+
ine

i
√

w2−q2−1v/2 +A+
oute

−i
√

w2−q2−1v/2 (6.1)

where A+
in = C00 and A+

out = C01 are the connection coefficients of the hypergeometric

equation given in the section 4.

For negative frequencies w < −
√

q2 + 1, the scattered waves should describe the time

reversal of the absorption process

v → ∞ , e−iwv/2

v → −∞ , A−
oute

i
√

w2−q2−1v/2 +A−
ine

−i
√

w2−q2−1v/2 (6.2)

where A−
in = C11 and A−

out = C10.
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Comparing the ’probability current’ J = −i(ψ∗∂vψ− c.c. ) at the boundary and at the

horizon, we can define the transmission and reflection coefficients. From the expression of

the connection coefficients (4.5), and using the relations

Γ(1+ix)Γ(1−ix) =
πx

sinh(πx)
, Γ

(

1

2
+ix

)

Γ

(

1

2
−ix

)

=
π

cosh(πx)
, Γ(1+x) = xΓ(x)

it turns out that the coefficients for scalar and shear perturbations are the same

R± =
|A±

out|2
|A±

in|2
=

cosh2
[

π
2

(

√

w2 − q2 − 1 ∓ w

)]

cosh2
[

π
2

(

√

w2 − q2 − 1 ± w

)] (6.3)

T ± =
±w

√

w2 − q2 − 1
∣

∣A±
in

∣

∣

2 = 1 −R± =
± sinh(πw) sinh

(

π
√

w2 − q2 − 1
)

cosh2
[

π
2

(

√

w2 − q2 − 1 ± w

)] (6.4)

Perturbations close to the mass-shell of the Hagedorn temperature w2−q2≃1 suffer a very

small absorption by the black hole R±≃1, T ±≃0. Higher mass perturbations on the other

hand are easily absorbed, since R± → 0 and T ± → 1, with a large mass limit (w → ±∞)

R± ≃ 1

cosh2(πw)
→ 0, T ± ≃ tanh2(πw) → 1 . (6.5)

Using the expression of the transmission coefficients T ±(w), we can write down the

spectral function for the dual theory. Assuming time reversal invariance, the spectral

function should be an odd function of the frequency, ρ(w) = −ρ(−w), and it should be

positive for positive frequency. Then,

ρLST(w) ∝ T +(w)Θ
(

w −
√

1 + q2
)

− T −(w)Θ
(

−w −
√

1 + q2
)

, (6.6)

where Θ(x) is the unit step function. Notice that the spectral function vanishes below the

mass gap and that there is no discontinuity since T ±(±
√

1 + q2) = 0. This follows from

our analysis, and otherwise the spectral function would be ill-defined, since the factors T ±

are oscillatory below the mass gap. Notice also that the zeroes coincide with the values

where there are no solutions in the geometry. Finally, although the explicit form of (6.4)

has the information about the values of the QNMs that describe energy loss towards spatial

infinity, their interpretation as resonances is unclear, since the spectral function does not

admit a simple analytic extension outside the real line.

If the gap is sent to zero, the spectral function becomes smooth

ρLST(w) ∼ tanh2(w) ,

while for a very large gap M or a large w, it is almost like a step function

ρLST(w) ∼ Θ(w −M) − Θ(−w −M) ,

recovering the zero temperature behavior. So, in the Hagedorn phase there is a general

suppression, especially of the states close to the zero momentum mass gap.
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The QNMs that contribute to this spectral function correspond to those in the second

sheet of the retarded Green’s function in the black hole. Only the hydrodynamic modes

are not captured by the little string theory degrees of freedom. They can be seen in

computations of the retarded Green’s function of the field theory using the boundary

action for modes vanishing at spatial infinity, as in [17–19]. However, the Green’s function

computed in this way presents spurious singularities on the real and imaginary axis. This

suggests that the usual holographic prescription for the computation of correlators should

be modified in this case.

7 Discussion

The linear dilaton black hole shows a quite peculiar analytic structure in its correlators due

to the mass gap. In other holographic setups like AdS/CFT, the retarded Green’s functions

only have singularities in the lower half frequency plane. Exceptions to this rule when a

quasinormal frequency crosses the real axis to the upper half of the complex plane translate

into dynamical instabilities. This is the case of the instabilities appearing for near-critical

embeddings of flavor D7 branes in AdS5 as the quark mass is varied [29, 34, 35], the

unstable sound mode of backgrounds above the Hagedorn temperature [10] or instabilities

of the Gregory-Laflamme kind [36].

The reason is that while a quasinormal mode usually has a divergent behavior at spatial

infinity, when it crosses the real axis it becomes a bounded state in the geometry. It has

finite energy and thus belongs to the physical spectrum, but the energy is negative, which

means that it corresponds to an instability. In the linear dilaton geometry, the modes that

cross the real axis always blow up at spatial infinity, so they never belong to the physical

spectrum and do not produce any instability. A technical way to see this is that they are

on a ’second sheet’ of the retarded Green’s function. Other apparent instabilities, including

poles on the real axis, are actually not present. They correspond to special values of the

frequency where there are no well-defined solutions to the equations of motion.

This solves the apparent inconsistency of the Gubser-Mitra conjecture for holographic

constructions with the results found in [17–19]. The marginal stability of LST at the

Hagedorn temperature is confirmed by the dynamical stability of the dual linear dilaton

geometry. Of course, quantum corrections can drastically change this result, but this is

beyond the realm of classical supergravity, which was our main interest. The holographic

computation of the spectral function above the mass gap confirms this picture, and no

instability appears.

The discrepancy between the bulk analysis and the holographic computation of Green’s

function using the boundary action suggests that the latter needs to be modified. A possible

way would be to use the bulk Green’s function to construct a properly defined bulk-to-

boundary propagator. The holographic Green’s function could then be found from the

convolution of two such propagators in the bulk or by finding the boundary-to-boundary

limit. In the presence of the black hole, it may be necessary to perform an analytic extension

beyond the horizon, as in [38].
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A Energy of T > TH black holes

The energy of the black hole solutions can be evaluated using the results of [37]. Consider a

constant time hypersurface Σt in the black hole background. The metric on Σt is given by

ds2|Σt = e
φ

2

[

R2dΩ2
3 + γ

dr2

f(r)
+Ncα

′dY 2
5

]

, γ =
Ncα

′R2

R2 +Nc
(A.1)

Take S∞
t to be a surface of constant and large radial coordinate value r = rmax in Σt,

which we can think of as a boundary of Σt. Define nµ
bh to be a unit vector normal to S∞

t

nµ
bh =

√

f(r)γ−1e−φ/4 δµ
r |r=rmax

The extrinsic curvature of S∞
t in Σt is

Kbh = ∇µn
µ
bh =

1√
gΣt

∂µ

(√
gΣtn

µ
bh

)

=
√

f(r)γ−1e−9/4 φ∂r(e
2φ)|r=rmax

where gΣt is the determinant of the metric on Σt (A.1). The energy of the black hole is

defined as an integral over the boundary S∞
t of

E = lim
rmax→∞

− 1

8πG10

∫

Kbh

√

|gtt|dS∞
t (A.2)

Using

dS∞
t = e2φR3(Ncα

′)5/2dΩ3dY5|r=rmax

the energy would be

E = − 1

8πG10
R3(Ncα

′)5/2f(r)γ−1/2∂r(e
2φ)|r=rmax

∫

dΩ3dY5

The above expression is divergent and needs to be regularized. Using the background

renormalization method, we subtract the analogous contribution of a reference background

Eren = − 1

8πG10

∫

(Kbh −Kref)
√

|gtt|dS∞
t (A.3)

For this procedure to be well-defined, the reference background needs to have the same

asymptotics as the black hole solution, and in particular its metric and fields need to ap-

proach each other sufficiently fast as rmax → ∞. The natural choice for these backgrounds is

ds2 = e
φ

2

[

−dt2 +R2dΩ2
3 + γdr2 +Ncα

′dY 2
5

]

(A.4)
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where the dilaton and three-form fields are exactly the same as for the black hole solu-

tions (2.1). The radius R of the three-sphere is also determined by the 3-form flux (2.2).

The metrics (A.4) are also solutions of the equations of motion of the type IIB action

coupled to the flavor DBI action.

First of all, the Euclidean time direction of the reference solution has to be compactified

and its radius at r = rmax has to match that of the black hole solution

|gtt,ref (rmax)| = eφbh/2f(rmax) .

Then, for the metric and fields of the reference background to match those of the black

hole solution we set

φref(r) = φbh(r) , Rref = Rbh .

As we did above, we can evaluate the extrinsic curvature of a boundary surface S∞
t in

the reference background

Kref = γ−1/2e−9/4 φ∂r(e
2φ)|r=rmax

The renormalized energy becomes

Eren = − 1

8πG10

∫

(Kbh −Kref)
√

|gtt|dS∞
t

= − lim
rmax→∞

1

8πG10
γ−1/2R3(Ncα

′)5/2
[

f(r)1/2(f(r)1/2 − 1)∂r(e
2φ)|r=rmax

]

∫

dΩ3dY5

=
1

8πG10
e2φ0+2r0γ−1/2R3(Ncα

′)5/2

∫

dΩ3dY5 (A.5)

where φ0 + r0 is the value of the dilaton at the horizon radius r0.

The dependence of Eren on the temperature comes solely from the fact that the radius R

and γ are functions of T

Eren =
1

8πG10
e2φ0+2r0(Ncα

′)5/2γ−1/2(T )R3(T )

∫

dΩ3dY5

=
e2φ0+2r0(α′)2

8πG10
N2

c V (S3)V (Y5)
T

TH
, (A.6)

where we have defined V (S3) = R3
∫

dΩ3 and V (Y5) =
∫

dY5.

The energy of the black hole solutions is proportional to their horizon area

A = e2φ0+2r0(Ncα
′)5/2 V (S3)V (Y5) , (A.7)

and the free energy of the black holes is vanishing

F = Eren − TS = 0 ,

where the entropy is

S =
A

4G10
.

The fact that the free energy vanishes can also be derived directly from a computation of

the renormalized Euclidean action of the black holes I, that is related to the free energy

by I = F/T .
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B Equations of motion for metric and dilaton fluctuations

The equations of motion for the metric and dilaton fluctuations around the black hole

background can be deduced from the following five-dimensional action

∫

d5x
√−g5

[

R5 −
4

3
(∂φ)2 +

4

Nc
e−4/3 φ

]

(B.1)

The background black hole metric and dilaton are

ds2 = e4/3 φb

[

−(1 − u)dt2 + d~x2
3 +Ncα

′ du2

4u2(1 − u)

]

φb = − 1

2
log u (B.2)

The equations of motion are

Rµν − 1

2
gµνR− 4

3
∂µφ∂νφ+

2

3
(∂φ)2gµν − 2

Nc
e−4/3 φ gµν = 0 (B.3)

∇2φ− 2

Nc
e−4/3 φ = 0 (B.4)

We will consider fluctuations δgµν = hµν(u, t, z), δφ(u, t, z) in the form

htt = e−iωt+iqze4/3 φb(1 − u)Htt(u)

htz = e−iωt+iqze4/3 φbHtz(u)

hxx = hyy =
haa

2

haa = e−iωt+iqze4/3 φbHaa(u)

hzz = e−iωt+iqze4/3 φbHzz(u)

δφ = e−iωt+iqzϕ(u)

htx = hty = e−iωt+iqze4/3 φbHtx(u)

hxz = hyz = e−iωt+iqze4/3 φbHzx(u)

hxy = e−iωt+iqze4/3 φbHxy(u) (B.5)

and the following choice of gauge

htu = hxu = hyu = hzu = huu = 0 . (B.6)

The sound mode metric and dilaton fluctuations {Htt,Htz,Hzz,Haa, ϕ} satisfy the following

system of linear differential equations

H ′′
tz +

Ncqω

4u2(1 − u)
Haa = 0

−12u(1 − u)(H ′′
aa +H ′′

zz) + 6u(H ′
aa +H ′

zz) + 16(1 − u)ϕ′ +
3Ncq

2

u
Haa −

16

u
ϕ = 0

12u2(1−u)2(H ′′
aa−2H ′′

tt+2H ′′
zz)−4u(1−u)(3uH ′

aa−9uH ′
tt+6uH ′

zz+8(1−u)ϕ′)

+3Nc(ω
2−q2(1−u))Haa+6Ncq

2(1−u)Htt+12NcqωHtz+6Ncω
2Hzz+32(1−u)ϕ = 0
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12(1 − u)2(H ′′
aa −H ′′

tt) − 12(1 − u)H ′
aa + 18(1 − u)H ′

tt −
16(1 − u)2

u
ϕ′

+
3Ncω

2

u2
Haa +

16(1 − u)

u2
ϕ = 0

24(1−u)2ϕ′′−24(1−u)ϕ′− 6(1−u)2
u

(H ′
aa−H ′

tt+H
′
zz)

+
2

u2

(

8(1−u)+3Nc(ω
2−(1−u)q2)

)

ϕ = 0

6ω(1 − u)(H ′
aa +H ′

zz) + 6q(1 − u)H ′
tz + 3ω(Haa +Hzz) + 6qHtz − 8

ω(1 − u)

u
ϕ = 0

6q(1 − u)(H ′
aa −H ′

tt) − 6ωH ′
tz + 3qHtt −

8q(1 − u)

u
ϕ = 0

2u(1 − u)
(

3(u− 2)(H ′
aa +H ′

zz) + 6(1 − u)H ′
tt + 8(1 − u)ϕ′ )

+3Nc(ω
2−(1−u)q2)Haa+3Ncq

2(1−u)Htt+6NcqωHtz+3Ncω
2Hzz+16(1−u)ϕ = 0

(B.7)

Conversely, the shear mode fluctuations {Htx,Hzx} satisfy the system

ωH ′
tx + q(1 − u)H ′

zx = 0 ,

H ′′
tx − Nc

4(1 − u)u2
(ωqHzx + q2Htx) = 0 ,

H ′′
zx − 1

1 − u
H ′

zx +
Nc

4u2(1 − u)2
(ω2Hzx + ωqHtx) = 0 . (B.8)

Finally, the scalar mode fluctuation Hxy satisfies the equation

H ′′
xy −

1

1 − u
H ′

xy +Nc
ω2 − q2(1 − u)

4u2(1 − u)2
Hxy = 0 . (B.9)

The functions {Htt,Htz,Hzz,Htx,Hzx,Hxy, ϕ} are in general not invariant under the resid-

ual diffeomorphisms that preserve the gauge choice (B.6)

xµ → xµ + ξµ ,

hµν → hµν −∇µξν −∇νξµ ,

φ → φ− ξµ∂µφ .

It is convenient to introduce the following gauge invariant variables [28]

Zsound = q2Htt+2qωHtz+ω2Hzz+q2(1−u)
(

1+
3u

2(1−u)−
ω2

q2(1−u)

)

Haa

2
, (B.10)

Zφ = ϕ− 3

8
Haa , (B.11)

Zshear = qHtx + ωHzx , (B.12)

Zscalar = Hxy , (B.13)
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The differential systems (B.7)(B.8)(B.9) then lead to

Z ′′
φ − 1

1 − u
Z ′

φ +
Nc

(

ω2 − (1 − u)q2
)

4u2(1 − u)2
Zφ = 0 (B.14)

Z ′′
sound+

q2u− 2ω2

(1−u)(2ω2+q2(u− 2))
Z ′

sound−
Nc(4q

4 − 8q2ω2)

3(1−u)(2ω2+q2(u− 2))
Zφ

−4q2u2(1 − u) −Nc(q
4(u− 2)(u− 1) + q2ω2(3u− 4) + 2ω4)

4u2(1 − u)2(2ω2 + q2(u− 2))
Zsound = 0 , (B.15)

Z ′′
shear −

ω2

(1 − u)(ω2 − q2(1 − u))
Z ′

shear +
Nc(ω

2 − (1 − u)q2)

4u2(1 − u)2
Zshear = 0 . (B.16)

Z ′′
scalar −

1

1 − u
Z ′

scalar +
Nc(ω

2 − (1 − u)q2)

4u2(1 − u)2
Zscalar = 0 . (B.17)

Note that Zφ and Zscalar satisfy the same differential equation, which corresponds to the

equation of a minimally coupled scalar in the black hole background.
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